SIDE LIGHTS UPON PREHISTORIC MAN AND HIS CIVILIZATION
IN NORTH EASTERN AFRICA

FAROUK A. GAWAD M. SHEWIKA (*)

Key Words : Prehistory, Man, NE Africa (**)

Abstract in Arabic

(بعض الأضواء على انسان ما قبل التاريخ وحضارته في شمال شرق أفريقيا)

فأروك عبد الجواد م. شوقيه

الكلمات الدالة: ما قبل التاريخ، الإنسان، ش.ش. ش. أفريقية

تقديم:

والدراسة المعروضة تدخل في مجال اهتمام البحث به، موضوعاً واقعياً، إذ أن لسياسته الكثير من الدراسات في عصر ما قبل التاريخ في هذا الاتجاه وما حوله، هذا وسجل من وظائف الأداء لسياسته، ما قدمة لتعليمه وزملائه من الجيولوجيين واللاضرواويين. حسن الله إليه، واطلق بقاءه بصحبة وحناء.

مستخلص للدراسة

تعد منطقة شمال شرق أفريقيا إحدى المناطق الأربع الرئيسية في إفريقيا التي عمرها الإنسان ما قبل التاريخ بحضارته، وقد شهدت منذ القرن الماضي الكثير من الحفائر والكتب والبحوث، ومازالت تشهد

(*) Assistant Professor of Anthropology and acting head of the Department, Institute of African Research and Studies, University of Cairo.

(**) The number of the subject of this paper is, according to:
L.C.C. Class G 3rd ed. GN784.7
B.G. LA : VA : VAS.
وتكرس عما في داخلها من كتلون (كشوف: برست،زادوندرو،وآركل، بونتر، 118، اللخ) ولقد اشتملت بالكثير في كشف النقاب عن أسرار وجوامع فترة هامة من تاريخ الإنسان البولوجي والثقافي.

وتتركز مشكلات البحث الثقافي حاليا في شمال إفريقيا لفترة ما قبل التاريخ، في ثلاث نقاط: الأولى، أصل نمط الآلات الحجري الأولي وعظم انتشارها، والثانية، اتجاهات انتشارها، والثالثة، النشاط العام مع الآلات، خاصة بالأنسان الحديث وآلهته، وعند ماكيرني

McBurney، C.B.M. (1940) أن غضب انتشار اقتصاد انتاج الغذاء (بالزراعة والرعي) بدلا من الصيد، يحدد نهاية العصر الحجري وبداية عصر استعمال المعدن بصفة عامة.

ولقد بدأ الاهتمام بدراسة آثار ما قبل التاريخ في مصر عندما وجه الانتظار إليها، وبناء على الاهتمام كينت ستيروارد Hume، W.F. يحدق ساندفوورد، K. S. وستوارت، K.

حدثت وحولت المنطقة من إقليم شبه الجزيرة الفرات إلى أطراف الجبال بواسطة نهر النيل، وفيها كانت البلاد العربية والدولة الدينية من البلاد العربية الأوسط كانت مناطق جنوب وغرب أوروبا ذات مناخ مداري ومرتبطة بالنشاط الشرق الأوسط بمعيار إضافة، حيث كانت الانتواع الحيوانية الأساسية كانت سائدة في أوروبا أكثر من الانتواع الأفريقيا.

وخلال العصور البوتيرة كانت تسقط على الصحراء الأفريقية إضافة غزيرة، حيث كانت بحيرة، بحيرة تنشد: الصفراء، الفاتحة، عظيمة الإنسانون والمقص، حيث كانت تصل شرقا إلى خليج سبليت شمالي الخريطوم. وكانت هذه المنطقة المائية التي كانت واسعة الانتشار تحدد حركة الإنسان والحيوان في مسالك معينة في المرتفعات، ولكن بعد عصر البيستوسين أخذت البحيرات والمستنقعات في الجبال ما جعل شرق أفريقيا تسبق أكثر من حركة الحيوانات قادمة من الشمال.

ولقد كشفت أودية الصحراء الشرقية في مصر على أنها كانت تحمل المصدر الأكبر من المياه التي كانت تصل الصحراء خلال البيستوسين، توضح ذلك خاصة من دراسة الطمي السبلي في كوم أمبو، وتوجد Arambourg، G، آراميتوج التي يوجد في شمال إفريقيا تواجد في منطقة من تكوينات الأولى أسماه «تكوينات الإطرس» والآخرى «منطقة الصحراء»، ويبدو أن أفضل تفسير للظروف الجغرافية وادي الدين خلال البيستوسين والحضارات الحجرية المصاحبة لها مقام في بيتروز، 1942، هذا وترتب مشكلة مدرجات النيل بأدوار الارتفاع وانخفاض البحر المتوسط وفج، امكن الربط بين أكثر من دور ومدروج (حزين - 1941).

ولقد كان النصر دور ملحوظ في كشف الأثر البولوجي للإنسان القديم، وإنسان ما قبل التاريخ من النوع العاقل، وأيضا قدمت مصر.
الحضارات يقال أنها لبعض من أسلاف الإنسان القديم (من القويم) ، كما
عثر أيضاً على حضارة أخرى من عصر الميوسين في واحة الغاراة في الصحراء
الغربية المصرية ، وكذلك : يمكن أن تكون لسلاسل أفريقيا ذات الأهمية
الكبرى التي تغطى شرق أفريقيا ، وذلك بفضل الكنوز التي ترجع إلى
الباليستوسوينيا الأسفل في كل من الأفريقيين .

ومن هذه الدراسات ومن دراسات محاولة سهول وهضاب الصحراء
الغربية في مصر ، التي كانت صحراة منذ عصور جيولوجيّة طويلة ، امكّن
دراسة الأحوال الجغرافية والإيكولوجيّة القديمة خلال عصر ما قبل
التاريخ ، ومن الدراسات القديمة : تلك التي قام بها خزين (1941) وربط
فيها بين الفترات السابقة وبين الحضارات البدوية والتاريخ الزمانى .
والقد دلت القياسات واللاحظات الارتدوبترية والانتربروسكوبية
Biaussutti, R. Kollmann, J. (كولمان 1965) ، بيوستي (1963)
على وجود بعض صفات الزراعات وصفات الكيبيونين (البوشم والبوانتو)
في الجينيولو الملافى ، ولقد أظهر ذلك كثاب هذا المثال ، بأنه اضمنا
(1968) في الواجهات البدوية في الصحراء المصرية (راجع مقال :
المجموعة الكيبيونية مجلة الدراسات الأفروينية ع 6 ، 1977)

وبعد أرثى توني (1966) ، لم يكن في أفريقيا
من المراكز الحضارية الرئيسية من بين الـ 21 مركزًا التي عدتها في
العالم ، سوى مصر ، التي كانت تحتل بها المراكز الأفريقيّة التي
لحظتها بأن تكون في عدة مناطق من القارة ، بل إنه من المفهوم به أن كل
الحضارات الثانية لحضارة ما قبل التاريخ المصرية سواء من عصر الحديد
أو من العصور اللاحقة في كل من أوروبا وآسيا ، كانت على صلة بما بيتلك
(شارد 1976) ، الذي يذكر أن مصر
كانت من ست بيئة عالمية ، ظهرت فيها المدنية (بضم الميم وفتحها)
على حد سواء (بصورة مستقلة)

وقد كانت حضارة القويم (600 ق.م.) أول حضارة صنعت
الفخار ، كما عرفت زراعته الشعير والحمض emmer
في هذه الفترة
البكرة (8000 ق.م.) ، كما انتشرت الثقافة (الحضارة) عدة مظاهر
ثقافية كزمان ومكان معينين راجع الباحث كاب مقدمة في الارتدوبترية
الطبيعية والسائبة.الظاهرة . (الأهرام والنقش ، عام 1962)
المجلة العربية (النيل الأول والاخيرة) تحت القيادة الصغرى (النيل الأول والاخيرة).
وهو النيل غربا إلى الواحة الخارجية . هذا وكان
النهر النيل دور واضح ، غير مساعدة المباشرة في تقدم الزراعة ، إذ عمل
منذ وقت مبكر على ربط المراكز الحضرية والحضرية المصرية على طول
طريقه ، بصورة مثالية في الشرق الأوسط (شارد 1975) ولا في
أفريقيا ، وكان ذلك للأمة طور البئرة (انتاج الأرض = النيل)
منذ حوالي 5 آلاف سنة قبل البلاد ، وكانت هذه بداية انتشار الحضارة
المصرية خارج البئرة الجبلية الضيقة (إلى آفاق بعيدة (قال اليوسف سميث
1973) أن أصل البولينزيون من مصر 4)
ولقد اثر على حضارات كثيرة (آلات حجرية وأواني فخارية) في عدة مواضع في الدلتا وغربها (مرمدة) وعند بدايةها (حلوان والمعدات)... يدور تاريخها مع حضارة الفيوم حول 4000 ميل، وهي حضارة تم بث... وتعد لهضارات تاريخية لاحقة، على أنها في البداري (حوالي 4000 ميل)، وزاوية (3500 ميل)... وغيرها، وكلها مهدت لقيام مصر الإسرائي السيدة والملكة القديمة المصرية.

ومن الكشوف ذات القيمة، ما عثر عليه كينتون طومسون (1930-1931) في الواجهات الخارجية، بعد أن كانت قد تابعت مع جاردنر (1924-1928) كشوه في شمال الفيوم عن حضارات مصر ما قبل التاريخ معزول من الجماعات الملكية الأثرولوجية في لندن، وقد ساهم بعد ذلك المصريين بجهودهم في هذا المجال (المحيط، العذري، حزينة، رفظان، مازالوا وهم الذين وضعوا الكثير من النظريات التي التقط الضوء على كثير من المشكلات في العلاقة بين مدرجات وادي النيل وأوان تذبذب البحر المتوسط، وعلاقة حضارات ما قبل التاريخ بالحضارات المجاورة والحضارات اللاحقة لها في مصر وغيرها).

هذا وقد ارتبطت حضارة السودان بالحضارات المصرية منذ فجرهما، خلال عصر ما قبل التاريخ، أكد ذلك الكشوف التي قام بها فندرس بري وتيمسند (1905-1907) وأركيل (1949)؛ وأوضح أن الحضارة التي اذخرت مروي ومملكتها (350这意味着 بالمجرد من موقع الخريطة الحالي) كانت لها جذور عميقة في التاريخ السوداني والافريقي، وأنها كانت على صلة بحضارة مصر خاصة نمط المبوم والثقافة المحلية.

وقد كانت لهذه الكشوف السودانية دور بارز في إضافة - نتيجة لتأكيد انتخاب النظام الذي عثر عليه آركيل بجوار الخط الحديدي إلى السلاسل الزنجية - أن أصل هذه السلاسل ونشأتها قدما وعديدة في القارة الأفريقي بالتحديد، هكذا ورجح ما ك企业提供، أن حضارة الخريطة هذه ترجع إلى 2525م (0.305). وقد ترجع مدينة الخريطة تلك، لاجتهادات كثير من الباحثين، فهي عند آركيل لسلاسة زنجية، أما تشارلي كراون (1964) أي يعتقد أنها من سلاسة حامية مختلطة بخارية زنجية، وأنها ليست زنجية سرفة.

وإيا كانت الآراء بخصوص النقاء الزنجية في هذه الجمعية، فإن الاتفاق تام بين الجميع على أن أصحابها هم الذين اشتهروا الحضارة القديمة في السودان، وأنهم كانوا على صلة قوية بعصر...

Caton-Thomson, G.

Bond, W. R.

ومن الكشوف الأخرى الهامة، ما عثر عليه يوند (1944) من حضارة سنجا، وهي لاتشان من السلاسل الكيبونائية (راجع).

من كل هذا نخلص إلى نتائج هامة هما: أن هذه الحضارات التي شهدها القسم الشمالي الشرقي من أفريقيا، وتحديداً أكثر في وادي النيل الأوسط، والأدنى خلال عصر ما قبل التاريخ، كانت هم الأساس والاررابات الأولى للحضارة القديمة والحضارات المتأصلة بالقارة الأفريقية، وإنها من أقدم - إن لم تكن أقدم - حضارات الإنسان.

والنتيجة الثانية هي أن هذه الحضارة ويمكنا النتائج المتكررة والمختلفة والتعايش كانت تمتلك نسب حضارية واحداً، أي أن التسليح الحضاري والثقافة لأفريقيا الحديثة والعصراني الذي يجعل من معظم وادي النيل أقليما حضارية واحداً، له أساس عامي وجذور متنوعة تعود إلى عصر ما قبل التاريخ، وإن هذه الحضارة تعد - بالقول - أعرق وأطول حضارة إنسان شهدتها القارة الأفريقية، بل ربما العالم.

Preface:

This paper is written on the honour of Prof. M.S. Ghallab, Professor of Geography and Anthropology and the Dean of the Institute of African Research and Studies, on his retired in Oct. 1979.

Prof. Ghallab, M.S. of the University of Cairo must be both a legend and a myth, with his scholars and fellows Geographologists and Anthropologists, he has a legend for producing sound and useful translations into Arabic of many useful and good books published in Europe and America. For a large segment of the public he was the Demographian (with his fellow Prof. Hakim, M.S.) of Egypt, because of a high school textbook of great acceptance between both fields of Geography and Anthropology in Egypt and the Middle-East. Within academic circles he became a myth of kindness and helpfulness and as a promoter who could raise a high and concentrated studies by rapporting our Institute, and raise financial support for studies seeming remote in time and space.

This is Prof. Ghallab, who that I am one of his students and colleagues. He had an extremely courage opened gates of opportunity to many of this colleagues to have work in the Institute of African Research and Studies in University of Cairo. They in fact preserve, for him, a great respect and love, the writer of this paper give his word that he by all means has in his heart a great love to his Professor, whom he writes this paper to honour him in his sixty birthday (June 1979).
I hope that I was and will be hardly the best sincere man to him. There is no need for me so say much about those of Ghallab, M.E.'s writings in geography and anthropology. I first met Prof. Ghallab, M.S. in January 1966, a few days after he had arrived from Khartoum to occupy the chair of Geography and Anthropology in our Institute in Cairo but that is another story. On the other hand no one could complain about the precision of his exposition when herefound (with the kindness and helpful aid of Prof. Hassan Ismail) the Institute of African Research and Studies. He is in fact vigorous, ambitious and possessive to write many books, papers and translations into arabic in Physical Geography and Anthropology. He is -in fact- as I have saw, is immersely kind, he undoubtedly helped create the intellectual clinate of his day-both within and outside his subject-to an extent which I believe no other Egyptian Geographist of this century has done. His own opinions, right or wrong, were usually founded on facts which were open to all, as his heart. In fact he had left his marks on every one in our Institute.

I know, I speak for all who attended the Institute of African Research and Studies in Cairo in the period 1966-1974 and after that 1978-1979, when I express to Professor Ghallab, M.S. the deeply and most wormed thanks for the far-reaching researches he was able to encourage us to make in a rich and full days of life. God safe him and his family.

Introduction

North East Africa is one of the four main areas in africa, which the ancient man of prehistoric period and his civilization was take place, the other areas are : North West Africa, East Africa and South Africa. This paper is a study of the prehistoric man and his civilization in this area. The study will try to make light on the subject from four points: some geographical and ecological features; the evolution of Man in Egypt; human industries and civilization in early Egypt; and ancient Man and his civilization in Northern Sudan, (Map 1).

Since evolutionary theory shows how the hominid line derives from an arboreal ancestor, and the chimpanzee and the gorilla are both forest dwellers, it might be in the forested, or formerly forested regions of Africa that the fossil forms intermediate between ape and man will be mostly found. Very important fossil material is known from Fayum depression in Egypt, showing, the extent to which the forests had been able to spread during the mid-Tertiary in a region that is now desert.
in North Africa (1).

The main fossil-bearing regions of the continent of Africa are the Western and Great Rift Valley areas of east Africa, the Maghreb, certain locations in South Africa and a few isolated localities in Egypt. Paleocological studies show that the climate of the Miocene was in general more uniform than that of the Quaternary. These humid equable conditions permitted the spread of extensive forests in Africa.

and Eurasia and this particularly forward evolution, including that of certain semiaboreal forms of Ape.

K.S. Sandford and W.J. Arkell spent two seasons of field work (1926-27, 1929-30) to investigate and make study about 350 miles of the Nile Valley between Luxor in Upper Egypt south to Serah in Sudanese Nubia (40 miles south of Wadi-Halfa). K.S. Sandford in the third volume of «Prehistoric Survey of Egypt and Western Asia» (1), describes about 400 miles of the Nile Valley and some of its tributaries between Luxor and Beni Suef, with notes on the east bank between Beni Suef and Hilwan. New light was also brought to bear on the relationship of the Fayum to the Nile (2).

Butzer, K.W. spent since 1957 many seasons of research and field work in Nubia in Egypt and Sudan, he tries to complete Sandford's work, in fact he occupy the chair of Geography and anthropology at the University of Chicago. There were many books on the prehistory of Africa; some of it are: «The Prehistory of East Africa by Sonia Cole, and «The Prehistory of Southern Africa by J. Desmond Clark» the two are of Pelicans, the last one is of Penguin: «The Stone Age of Northern Africa by C.B. McBurney; «Early Hydraulic Civilization in Egypt» by Karl W. Butzer.

METHOD, MATERIAL AND DISCUSSION.

The problems raised by the present state of investigations in Northern Africa fall naturally into three main classes, the first concerned with the origin and spread of the earliest type of industrial activity expressed in stone-work, and more particularly by hand-axes, involves such questions as a date and place of origin, direction and nature of spread, and its duration, the second and third are concerned in a similar way with the industries associated respectively with Neanderthaloids and modern Homo sapiens. While the final and perhaps most complex problem is that of the origin and spread of foodproducing economies which herald the end of the Stone Age and the beginning of the general use of metal (3).

(1) Sandford, K.S. : Paleolithic Man the Nile Valley in Upper and Middle Egypt. Chicago, The Univ. of Chicago Press, 1934.
(2) Ibid, p. 121.
Some Geographical and Ecological Features:

The interest in the research fieldwork in prehistory of Egypt was raised by the work of Hume, W.F. and to the importance of Kenneth-Stuart Sandford results by fining precisely for that district the date of the change, widespread in Africa, from moist to a desert climate.

During the Early Pleistocene and the interglacials of the Middle-Pleistocene southern and Western Europe were tropical regions, connected by the Near Eastern land bridge to both the Oriental and the Ethiopian regions. Asiatic species were commoner in Europe at these times than African one, although both were present (1).

Africa and South-Western Asia seem long to have been joined by the Sinai Peninsul and so they provided a constricted gateway between Africa and Asia(2).

During pluvial periods similar floodings took place in Africa, in what is now the the Sudan and southern Sahara. Lake Tchad, now a shrinking body of shallow water, was once a broad and deep lake. To its east extended, at least intermittently during the Pleistocene, an extensive area of swamps and sometimes possibly of lakes. This barrier extended from the Sabaluka Gorge, 50 miles north of Khartum, some 450 miles southward to about 10° North Latitude, (3) (Map 2).

These water barriers, and the existing great of East Africa, which were greatly enlarged during pluvials, must have restricted animal and human traffic in Africa, moving both north and south and east and west, to a few narrow highways, and made Black Africa nearly as inaccessible as western Europe. But after the Pleistocene the lakes and swamps shrank and the East African highlands were invaded at least twice by people from the north. (Map 3).

There is every reason to suppose that the part of the Nile basin draining into the Nubian area (Map 4) received a considerable rainfall in Pontic and later Pliocene times. Judged by the Pliocene deposits, it was abnormally heavy. There is no sign within our area of any desert period before Pleistocene times, and the Plio-Pleistocene terraces indicate a liberal water supply from the south, east (especially), and west. The

eastern hills throughout were the main source of surface water. (1)
(Map 5, p. 29 in this paper).

In upper Egypt the features of silt accumulation are similar to those
in Nubia, but the local rainfall survived in some small measure. The
vast mass of silt in the Kom Ombo plain was left virtually intact, however,
and the wadi valleys from the eastern hills have been established across
it to the Nile. In view of the large areas of silt surviving in exposed
places, it must be assumed that the rainfall had virtually ceased in
Upper Egypt by Upper Sebilian times.(2)

C. Arambourg said that there were in North African two kinds of
areas under very different conditions. The first, which he call it the
«Atlas Zones», corresponds to the broad zone of Pyrenean-Alpine folds,
which make up the largest part of Maghreb, extending from the north
of Mauritania to the Tunisian edge of the Gulf of Syrte. The second,
which named by him also as «The Nilotic-Saharian Zone», corresponds

(1) Sandford, K.S. and Arkell, W.J.: Paleolithic Man and the Nile Valley
in Nubia and Upper Egypt, p. 85.
(2) Loc. cit.
to the flat region extending from the south end of the Atlas Mountains to the Red Sea and includes all of Libya, Cyrenaica, and the northern Nile Valley (1).

I shall confine myself to an account of the recent reports of K.W. Butzer, which seem to offer the best resumé of the geological story and prehistoric culture of the Nile Valley. The following table (No. 1) show a mately picture.

The complex problem of the Nile and wadi terraces in Egypt(2) is directly or indirectly associated with the Mediterranean chronology of sea level fluctuations. Hence the Pleistocene terraces of many smaller rivers draining to the sea may be of great stratigraphic importance(3).

The relations of the Lower and Middle Paleolithic levels in Egypt to the Mediterranean beaches may be summarized as follows(4). The 300 foot Nile terrace = 100-90 meter or Sicilian beach. The 200-foot Nile terrace = 60-55 meter or Milazzian beach. The 150-foot Nile terrace falls 9 meters below, but may also be tentatively correlated with the Milazzian. Before the building of the High-Dam at Aswan; these terraces had been traced from Wadi Halfa in the Northern Sudan to Cairo.

W.J. Arkell had accompanied K.S. Sandford in three seasons of extension of work from the first cataract to the Mediterranean. The presence of large vertebrates in the early Miocene fluvial beds of northern Egypt is directly linked to the presence of a major(5), allochthonous river(6).

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Nile and Wadis</th>
<th>Climate</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000 B.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holwan Culture</td>
<td>No wadi activity, renewed aggradation.</td>
<td>Dry, warmer</td>
<td>Desert</td>
</tr>
<tr>
<td>Epi Levallois III</td>
<td>No wadi activity, Nile deep cutting</td>
<td>Dry, cool</td>
<td>Desert</td>
</tr>
<tr>
<td>Epi Levallois II</td>
<td>Wadi activity, Nile aggradation</td>
<td>Damper, cooler</td>
<td>Dry steppe</td>
</tr>
<tr>
<td>Epi Levallois I Upper Levallios</td>
<td>First silt aggradation by floods</td>
<td>Dry</td>
<td>Eri desert</td>
</tr>
<tr>
<td>30,000 B.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levallois</td>
<td>Torrential aggradation</td>
<td>Damp, cooler</td>
<td>Dry steppe</td>
</tr>
<tr>
<td>Little wadi activity,</td>
<td>Damp, warmer</td>
<td>Thom avanna</td>
<td></td>
</tr>
<tr>
<td>No wadi activity</td>
<td>Dry, warm</td>
<td>Desert</td>
<td></td>
</tr>
<tr>
<td>Acheul</td>
<td>Renewed aggradation</td>
<td>Damp, cooler</td>
<td>Etesian steppe</td>
</tr>
<tr>
<td>Little wadi activity</td>
<td>Dry</td>
<td>Eri desert</td>
<td></td>
</tr>
<tr>
<td>No wadi activity</td>
<td>Damp, cooled</td>
<td>Etesian steppe</td>
<td></td>
</tr>
<tr>
<td>Acheul</td>
<td>Torrential aggradation</td>
<td>Damp, cooler</td>
<td>Etesian steppe</td>
</tr>
<tr>
<td>No wadi activity</td>
<td>Damp, warm</td>
<td>Thorn or grass savanna</td>
<td></td>
</tr>
<tr>
<td>Lower Acheul</td>
<td>No wadi activity</td>
<td>Dry, warm</td>
<td>Desert</td>
</tr>
<tr>
<td>Abbevillian</td>
<td>Torrential wadi and Nile aggradation</td>
<td>Damp, cooler</td>
<td>Etesian steppe</td>
</tr>
</tbody>
</table>
The western plains and plateaus of Nubia and Upper Egypt probably remained in a semi-desert state for a very long time, and to the end of the geologically dated record there is only one known occurrence of an incorporated sand dune-in the silt on the west bank between Gebelein and Armant. It suggests, however, at least a semi-desert climate at the time of silt accumulation. On a hard limestones plateau the border between semi-desert and desert is a narrow one(1).

On the whole, then, it appears that run-off began to fail in Nubia at the close of Acheulean in Upper Egypt during Mousterian, times; that it failed entirely in Nubia by the close of the Sebilian aggradation, and in Upper Egypt but little later; and that sand accumulated locally near the river in small dunes in the north before it did so in the south. The sand was derived, however, from the western plains, and it is possible that from an early date their climate differed from that of the Nile(2).

The great work of S.A. Huzayyin (1941) (*) deals with the climatic and archeological evolution of the entire Sahara-Arabian belt and gives for the Sahara some sequences, we can introduced it here after transcribed it with several additions from a more recent version by himself(*), as the following sequences :-

1. Two sort pluvials dating boch to about 666.000 years ago. (Pebble culture to Acheulean).

2. Along dry period (with short wet interruptions from 430.000 to 230.000 years ago (Acheulean).

3. A very long Saharian pluvial from 230.00 0to 70.000 years ago, with 2-3 submaxima (Acheulean, Levalloisium, Upper paleolithic).

4. Postpluvial, arid, with maximum in Upper Paleolithic (to Mesolithic).

5. Neolithic «Fairly wet phase» (5500 to 2500 B.C.).*)

(1) Sandford, K.S. and Arkell, W.J., Poleolithic Man and the Nile Valley in Nubia and Upper Egypt, P. 86.
(2) Loc. cit.
(* This figures very similar to those of Butzer, K.W. (5000 - 2400 B.C.)
Wadi Qena is a broad and deep valley which joins the Nile from the north at Qena town, about 40 miles north of Luxor. The history of the two valley is closely associated, and the former explains some of the problems of the latter. Like all the tributaries of the Nile (north of the Atbara), Wadi Qena is now a dry valley and a desert. The oldest beds visible within the walls of the valley-system are of Pleocene age, deposited in a gulf of the Mediterranean. This had been cut by reversion during the elvation of the Egyptian plateaux in Miocene and (in the south) northy in Oligocene times, and it was then flooded to a height of at least 550 feet above present sea-level. A non-fossiliferous series of strata was deposited in it: breccia and conglomerate at the valley-sides interdigitating with limestones, which, towards the centre, give place to clays and marks and, rarely, to sandy beds of quartz derived from the south. Great thicknesses of travertine are locally present in the series.

Re-elevation carried the flooded valley-system back to fluviatile conditions in Plio-Pleistocene times, accompanied by the irruption of enormous quantities of detritus from the Red Sea Hills. Some interesting relics of this early invasion are to be found throughout the area.

In Pleistocene times an ordered succession of river-terraces was laid down in the Nile Valley and in all the major wadis, and by countless short tributaries rising in the Pliocene deposits which lined the sides of those valleys. A complicated series of local and non-local stages results, in which the meanders of the Nile (in particular) and their effects on the local stages may be traced. The gravels of each stage contain Paleolithic instruments, and on the surface of each may be found the working-floors of the next succeeding industry. The sequence is:

100 - foot terrace: Chellean
50 - foot terrace: Acheulean
30 - foot terrace: Early Mousterian
15 - foot terrace: Mousterian

Thereafter (in Upper Paleolithic times) desert conditions began to assert themselves, and the Nile alone survived, supplied from more favoured regions farther south. (1)

The Evolution of Man in Egypt:

What do we mean by term «Man»?: Can we define man in terms of the size of his brain? It may be usefull in the first forms of man, but among modern men the dimensions of one's brain do not correlate very well with genius. And it is in fact-dealing with the brain-not what one has but what one does with it, that counts.

In recent years students of prehistoric man have often defined man as a creature who manufactures tools in a constant, repeated pattern. This test has considerable usefulness but also serious limitations. Tools made of wood, bone, and similar materials do not survive well in most conditions(1); and there is evidence that chimpanzees, for example, can fashion useful objects for their needs. If we do take stone tools as a rough indicator, then mankind has existed certainly for one million years and quite probably for 2½ million years. There are other aspects of «Man» which one must not overlook. For some of us and I am one of them «Man» is distinguished from all other creatures by the possession of the soil.(2)

Man is distinguished from other primates by his upright posture, bipedal locomotion; peculiarly prehensile forelimbs, his large brain, and the ability to make and use many kinds of tools. Man's humanity shows itself in the many complicated social and cultural patterns that are unique to his kind. Some of the stages whereby this transformation from a quadrupedal ancestor was effected can be adduced from a study of the fossil record as it is known from the discoveries in east Africa and Egypt. (Fig. 1).

As far as we know at present, tool-making began in Africa in the second half of the Lower Pleistocene, with split pebbles, choppers, and chopping tools. This simple technology spread as far as Southeast Asia and Indonesia. At this point the hominid would know but a single way of making tools. The toolmakers of Africa and Palestine had added, coarsely-chipped, ball-like implements to their repertoire, and these new items were apparently not diffused to the East(2).

Until a few years ago two small and ancient fossil mandibles were believed to provide a common catarrhine link between the Old World

Fig. 1. Phylogenetic tree of the Primates (From Elliot-Smith, 1927) Note the suggestion of an ancestral relationship between tarsiids and simians and the departure from the usual anthropoediatric representation of Man as the most advanced form, on the far right of the tree.

monkeys and the Hominoids. One was «Amphipithecus», found in an Upper Eocene deposit in Burma, (2) the other was «Parapithecus» (3), from the Lower Oligocene beds of the Fayum in Egypt. Now both of these have been discredited. Not only do we lack a common ancestral catarrhine, but we have no fossil cercopithecidae older than the Lower Miocene, at which time genuine Old World monkeys appear in East Africa. A small frontal bone from the Lower Oligocene beds of the Fayum has recently been identified as that of a primate, probably a catarrhine (4), but this does not solve the problem because we do not

know that kind of a catarrhine it was. In its general configuration it resembles an ape rather than a monkey, but that is inconclusive.

The earliest remains in Egypt are found in Fayum region, where a series of Oligocene deposits were laid down when the area was covered with swampy rain forest. A large number of primate remains have now been recovered from these deposits representing a number of genera including the early «monkeys» Apidium and Parapithecus, and the primitive «apes» Oligothercus, Aeolopithecus, Propliopithecus, and Aegyptopithecus. For many years the amount of fossil material from the Fayum region was small and fragmentary and there was much speculation concerning its phylogenetic status.

However, as a result of present excavations some of the above genera are now known from extensive material, Apidium and Parapithecus are remarkable among Old World anthropoids in having three premolars in both the upper and lower jaws, but the cranial remains of Apidium and the molar tooth morphology in both show them to be quite definitely Anthropoidea. Further the incipient bilophodonty (tendency for the anterior cusps to be joined transversely to form a bar, and the posterior cusps likewise) of the molars, so characteristic of cercopithecoida identifies them with this group. (1) The upper canines are large but the lower ones small; the molar tooth morphology is essentially of ape-like form. So far as can be judged from the postcranial material, Aegyptopithecus was probably an active runner and perhaps leaper in the canopy of the forests which covered the Fayum in Oligocene times. (2)

The first elements of Miocene fauna of North Africa were discovered in Egypt, (3) in the Moghara Oasis 150 kilometers southwest Alexandria.

Lower Pleistocene archaeological sites are as old in North as in East Africa. Moreover, what may be the oldest Austrolopithecine yet found comes from the heart of the Sahara from Tchad, halfway between these two most ancient archaic archeological regions. Thus, North Africa has as good a claim to the title of Cradle of Mankind as Tanganika. (4)

(2) Ibid., p. 38.
When we discuss the origin of the Negroes in Africa, we can notice that they are a distinctive people, anatomically and physiologically, and must have arisen in another part of Africa, probably north and west of the Congo Basin. There evidence is scarce and of late date (1).

The oldest skeleton that all writers agree was that of a Negro in the so-called Asselar Men, found in 1927 by M.V. Bernard and T. Monod, in a dry bed of a wide and permially flowing river near Tilemsi depression in the Sahara, 400 Kilometers north of Timbuktu. (2) No implements were associated with this skeleton, with it, however, were found the remains of fresh-water molluscs, fish, crocodiles and various gazelles and antelopes, all of which still exist, but not in the Sahara. It was that of an adult male at least five feet seven inches tall (170 cm.), whose long bones were slender, whose forearms were long in relation to his upper arms, and whose lower legs were long in relation to his thighs. His pelvis, vertebrae, and hand and foot bones were all Negroid. In fact, from the neck down he was altogether a Negro.

Kollmann, J. (1903) cites a pygmy skull from Abydos, upper Egypt, probably 4,000 years old (3).

In 1905 Biasutti, R., (4) first noticed Bushman-like traits some of the oldest ancient Egyptian skulls, and since then the theory has been proposed and rejected several times. The writer himself noticed on his fieldwork study in December 1978, in Baharia Oasis in Western deserts of Egypt, that there are many Bushmenoid traits among some people there (Fig. 2).

The characters NH(R), NB, NB/NH(R), PL, NL and BL clearly distinguish the Egyptian from all Negroid types; they seem to be very constant for the latter. At the same time G.M. Morant found (5) that for each one of those measurements the Upper Egyptian types are nearer to Negro values than are Lower Egyptian, and the Early-Pre-dynastic is very slightly nearer to the Negroes than is the Nagada type (6) (Fig. 3).

(6) Loc. cit.
<table>
<thead>
<tr>
<th>Sexing</th>
<th>Sex</th>
<th>L</th>
<th>B</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoesseger</td>
<td></td>
<td>183.4 (27)</td>
<td>131.2 (27)</td>
<td>134.0 (26)</td>
</tr>
<tr>
<td>Derry</td>
<td>♂</td>
<td>183.5 (23)</td>
<td>131.9 (23)</td>
<td>134.5 (22)</td>
</tr>
<tr>
<td>Archaeological Report</td>
<td></td>
<td>182.2 (24)</td>
<td>131.6 (24)</td>
<td>133.6 (23)</td>
</tr>
<tr>
<td>Stoessiger</td>
<td></td>
<td>177.2 (15)</td>
<td>131.1 (15)</td>
<td>128.9 (15)</td>
</tr>
<tr>
<td>Derry</td>
<td>♀</td>
<td>178.3 (19)</td>
<td>130.1 (19)</td>
<td>129.4 (19)</td>
</tr>
<tr>
<td>Archaeological Report</td>
<td></td>
<td>179.7 (18)</td>
<td>130.6 (18)</td>
<td>130.3 (18)</td>
</tr>
</tbody>
</table>
TABLE 3: Data relating to the Difference between Miss Stossigzes (S.) and Professor Derry's (D.) Measurements of the 1924—1924 Badarie skulls (1) (*)

<table>
<thead>
<tr>
<th>Character</th>
<th>N</th>
<th>Maximum difference (D.—S.)</th>
<th>Mean difference (D.—S.)</th>
<th>Standard deviation of differences</th>
<th>Mole O’s of Egyptian E series</th>
<th>Presumed probable upper of mean for</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>53</td>
<td>—2.0</td>
<td>—0.22±.060</td>
<td>0.65±.043</td>
<td>5.72±.09</td>
<td>.65</td>
</tr>
<tr>
<td>B</td>
<td>52</td>
<td>—3.5</td>
<td>+0.02±.068</td>
<td>0.73±.048</td>
<td>4.76±.08</td>
<td>.54</td>
</tr>
<tr>
<td>B'</td>
<td>53</td>
<td>+2.5</td>
<td>+0.40±.067</td>
<td>0.72±.047</td>
<td>4.05±.06</td>
<td>.46</td>
</tr>
<tr>
<td>H'</td>
<td>52</td>
<td>+3.0</td>
<td>0.34±.065</td>
<td>0.70±.046</td>
<td>5.03±.08</td>
<td>.57</td>
</tr>
<tr>
<td>U'</td>
<td>53</td>
<td>+6.5</td>
<td>+1.29±.200</td>
<td>2.16±.142</td>
<td>13.77±.22</td>
<td>1.57</td>
</tr>
<tr>
<td>S1</td>
<td>8</td>
<td>—1.0</td>
<td>—0.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S2</td>
<td>8</td>
<td>+.2</td>
<td>+.13</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S3</td>
<td>8</td>
<td>—2.0</td>
<td>—.37</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>8</td>
<td>—2.5</td>
<td>—.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>J</td>
<td>33</td>
<td>+2.5</td>
<td>—0.03±.087</td>
<td>0.74±.061</td>
<td>4.57±.03</td>
<td>.52</td>
</tr>
<tr>
<td>GB</td>
<td>45</td>
<td>—5.4</td>
<td>—.43±.145</td>
<td>1.44±.102</td>
<td>4.67±.08</td>
<td>.53</td>
</tr>
<tr>
<td>LB</td>
<td>53</td>
<td>+.1</td>
<td>—.15±.036</td>
<td>0.39±.026</td>
<td>3.97±.06</td>
<td>.45</td>
</tr>
<tr>
<td>G'HP</td>
<td>47</td>
<td>—2.5</td>
<td>—.79±.064</td>
<td>0.65±.045</td>
<td>4.15±.07</td>
<td>.47</td>
</tr>
<tr>
<td>NH1L</td>
<td>47</td>
<td>—2.3</td>
<td>0.64±.064</td>
<td>0.65±.045</td>
<td>2.92±.05</td>
<td>.33</td>
</tr>
<tr>
<td>NB</td>
<td>47</td>
<td>—2.1</td>
<td>+.07±.053</td>
<td>0.54±.038</td>
<td>1.77±.03</td>
<td>.20</td>
</tr>
<tr>
<td>O1,R</td>
<td>46</td>
<td>—2.9</td>
<td>—.76±.075</td>
<td>0.75±.053</td>
<td>1.67±.03</td>
<td>.19</td>
</tr>
<tr>
<td>O2,R</td>
<td>45</td>
<td>+3.2</td>
<td>—.23±.071</td>
<td>0.71±.050</td>
<td>1.91±.03</td>
<td>.22</td>
</tr>
<tr>
<td>O2, L</td>
<td>44</td>
<td>—1.4</td>
<td>—.49±.050</td>
<td>0.49±.35</td>
<td>1.88±.03</td>
<td>.21</td>
</tr>
</tbody>
</table>

(*) Nagada I and Nagada II culture in Egypt were around 3800 B.C. (Monod, Theodore: "The Late tertiary and Pleistocene in the Sahara" In : Howell, F. Clerk and Bourlière, F. (eds.) : African Ecology and Human Evolution. London, Methuen & Co., 1964, p. 162),
TABLE 4: Some Anthropometric Measurements from Different Areas in Africa (1)

<table>
<thead>
<tr>
<th></th>
<th>No. of kulls</th>
<th>NHR</th>
<th>ND</th>
<th>100NB/NHR</th>
<th>P</th>
<th>N</th>
<th>B</th>
<th>GL</th>
<th>G'H</th>
<th>100GH</th>
<th>100H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Predynastic Egyptian</td>
<td>40</td>
<td>50.1</td>
<td>25.2</td>
<td>58.3</td>
<td>—</td>
<td>67.0</td>
<td>46.4</td>
<td>98.8</td>
<td>69.2</td>
<td>—</td>
<td>73.3</td>
</tr>
<tr>
<td>Zulu (Negroes)</td>
<td>20</td>
<td>47.2</td>
<td>27.3</td>
<td>58.1</td>
<td>—</td>
<td>70.0</td>
<td>39.8</td>
<td>101.0</td>
<td>69.5</td>
<td>72.1</td>
<td>75.0</td>
</tr>
<tr>
<td>Congo (6)</td>
<td>50</td>
<td>47.2</td>
<td>26.0</td>
<td>58.2</td>
<td>82.8</td>
<td>69.3</td>
<td>37.9</td>
<td>96.5</td>
<td>63.4</td>
<td>66.9</td>
<td>75.4</td>
</tr>
<tr>
<td>Dchagga (6)</td>
<td>12</td>
<td>44.3</td>
<td>27.8</td>
<td>62.2</td>
<td>—</td>
<td>73.0</td>
<td>38.6</td>
<td>105.0</td>
<td>68.2</td>
<td>70.5</td>
<td>73.2</td>
</tr>
</tbody>
</table>

TABLE 5: Some Anthropometric Measurements from Egypt (2)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>100B</th>
<th>100B</th>
<th>H'</th>
<th>100NB</th>
<th>NH</th>
<th>GL</th>
<th>L</th>
<th>LB</th>
<th>AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Measured Pre by Thomson & Maciver</td>
<td>131.4</td>
<td>71.7</td>
<td>98.1</td>
<td>134.0</td>
<td>124.3</td>
<td>50.3</td>
<td>67.0</td>
<td>98.8</td>
<td>183.5</td>
<td>102.0</td>
</tr>
<tr>
<td>Naga J A Fawcett</td>
<td>132.7</td>
<td>71.8</td>
<td>88.2</td>
<td>133.8</td>
<td>125.9</td>
<td>50.0</td>
<td>65.5</td>
<td>96.7</td>
<td>184.7</td>
<td>101.7</td>
</tr>
</tbody>
</table>

(2) Ibid, p. 6.
A detailed comparison of all the ancient Egyptian anthropological material leads to the following main conclusion (2):

a) In Pre-dynastic times there was a primitive, dolichocephalic race living in Upper Egypt which may have been directly descended from the people whose paleolithic are found on the high desert floor on either side of the Nile Valley. Though quite distinct from the main population, it bears certain relations to that more advanced type which suggests that the two had a common origin. This so-called Aeneolithic race as Flinders Petrie named it.

b) In Early Pre-dynastic times there were two distinct races man living in Egypt; one is the Theboid and the other, it is a supposed in the Fayuom. These may be called the Upper and Lower Egyptian races. They were as closely related to one another as two adjacent peoples are generally found to be, and there can be no doubt that they diverged from the same branch of the human tree at no very early date. (2)

The series represent various stages in transformation of one type into the other. The types shown in the following table (5), were rejected because each represents an adequate number of crania and shows no signs of intermixture with any race foreign to Egypt. The order in which they are arranged is that deduced from a comparison of the coefficients of Racial likeness between them (3)

(1) Ibid, p. 4.
(2) Loc. cit.
Fig. 2. Profile view of an Early Predynastic skull from Naga-ed-der (Heart Expedition). Beard and soft parts drawn from other specimens from the same site.

Fig. 3. Proto-Egyptian as represented in a pontaic statuette by a contemporary artist (Circa 3400 B.C.) From Hierakopolis. After Quibell.
The requirements of hunting and collecting (as were the people in the period of prehistory), keep the number of people who live near enough to one another to breed as a unit within about 500 or 600 individuals. We may agree with C.S. Coon, (1) but cannot prove as he said, that the most of the fossil men was lived in population of this size or even smaller. There is no logical reason why their populations should have been larger, at least in the earlier periods. (2) (Fig. 4).

We all already know how is the importance of fire is to the physical and culture evolution of man, this fact is need not be repeated here again. But if it can be shown that some geographical races got fire before others did, the implication will be that those who had it first were also the first to receive its evolutionary benefits, and that those who obtained it last must have been correspondingly retarded.

Unfortunately, the absence of fire can be indicated only by negative evidence. We cannot expect to find charred wood and bone in disturbed sites such as gravel beds, and if we find such evidence, as found it was at Swanscombe on the Thames in England, we are extremely lucky. In Africa there is evidence that fire arrived late, as late as 40 thousand years ago. In the earlier habitation sites such as Olorgesailie in Kenya, where layer after successive layer of hand axes, cleavers, and meat bones have excavated with the most meticulous care, not a trace of charcoal or charred bone has been found.*

Both Louis Leakey and Demond Clark, who are among the most painstaking and observant excavators in the world, have stated their conviction that in East Africa the entire hand-axe period was fireless almost to the end. If future excavations confirm this erudite opinion, we shall have one explanation of the extraordinarily slow pace that human evolution followed, in the Middle and Late Pleistocene, in Africa south of the equator, and perhaps also south of the Sakara.*

This idea means that the pace of the evolution of man (may be physically and culturally) in Africa North the Sakara and within, was more rapidly than it was South the Sahara.

Human Industries and Civilization in Early Egypt:

Toynbee, A.S. in his «study of history» (1962), lists twenty-one human societies or civilizations in al history. These include two in

(2) Loc. cit.
(4) Loc. cit.
Fig. 4. Predynastic Egyptian Skull from Naga-ed-der (Heart Expedition) - Namow, high-bridged prominent nose.

America, the Mayan and Andean, but not one in Africa except the Egyptian, which was of Mediterranean origin, yet Central Africa was in touch with Egypt from very early times\(^1\).

The most important intellectual achievement was undoubtedly the invention of systems of writing in all but one of the early centers of urbanism - although again it had little effect on contemporary life and its real impact was yet to come\(^2\).

For the very recent periods of prehistory in the Old World there was some hope of being able to do this because these recent periods - the late Neolithic, Bronze, and Iron Ages - over most of Europe and Asia were contemporary with the literate civilizations in Egypt and the Near East. In other words, history was being recorded and calendars were being kept in Egypt and Mesopotamia while many peoples of Europe were still in the Neolithic stage\(^3\).

There are six areas of the world where urbanism and civilization developed apparently independently: Egypt, Mesopotamia, India, China, Mesoamerica, and Peru. All these hearths gave rise to great traditions and civilizations, and all seem to have developed more or less on their own. In other areas of the Old World, civilization and urbanism came later and largely as a result of diffusion from the primary hearths\(^4\).

\(^3\) Ibid. 69.

\(^4\) Ibid, p. 262.
Map 5. The drainage basins of Wadis Shait, Natash, and Khepit. 1: Basement Complex, after Atlas of Egypt (1928), Sanedford and Arkell (1935), and Gemini IV photography; 2: elevation above 500 meters. Demarcation of the Kharit-Natash divide near Kom Ombo is arbitrary to permit comparison of the formerly independent Natash and Kharit basins.

In Egypt, the earliest settlement in which pottery was used, that of Fayum "As", is dated about 4500 B.C. (1)

The emer (Triticum diccum) and barley are known in Egypt from various Neolithic sites (Fayum, Merfude, etc.) from about 400 years ago (2).

The absence of Sebian implements (Fig. 5) from the desert surface for from the Nile; reflected that the rain-full had virtually ceased in Upper-Egypt by Upper Sebian times. Lower and Middle Paleolithic implements, but not Sebian, may be found anywhere between the Nile and the Red Sea (Map 6). Concerning the wester desert, opinions differ. Although Lower and Middle Paleolithic implements have been known for many years to litter the surface between the Nile and Khargah Oasis (Fig. 6-10) their distribution in the remoter parts remains

(1) Mellaert, James: The Chalcolithic and early bronze ages in the Near east and Anatolia, p. 10.

to be investigated gently. Beadnell, Hugh expressed the opinion many years ago that they did not occur\(^1\) Ball, J. more recently, has stated that he thinks they may be expected anywhere in the Libyan Desert\(^1\).

Throughout the Predynastic period, Egypt had been developing a series of small-to moderate sized farming villages linked by the Nile and local trade in both luxury and utilitarian goods. Although this network of internal riverborne trade facilitated relatively frequent contacts among the communities which lined the Nile, it did not seem to reach out beyond the borders of Egypt to embrace the Near East\(^2\).

\(^3\) Chard, Chester S.: Man in Prehistory, p. 275.
Fig. 5. Upper Sebilian implements from a site 40 above flood plain at Sibeira West, north of Wadi Halfa.
Fig. 7.—Nile Valley: Acheulian-Levalloisian specimens from 9 m. terrace; (1 and 2) fragments of hand-axes, (3) trimmed flake, (4 and 5) coarse tortoise-core flakes, (6) flakes-blade ($X \frac{2}{3}$).

Fig. 6.—Kharga Oasis: Late Acheulian specimens with traces of incipient Levallois techniques ($X \frac{2}{3}$).
Fig. 8. Kharga Oasis: Acheulian-Levalloisian specimens. (X\(\frac{2}{3}\))
Our knowledge of ancient Egypt is overwhelmingly from archeology. Fortunately, its material partly because of the prescriptions of a religion which emphasized the necessity of providing for the welfare of the dead by equipping them in the style to which they were accustomed in life. In addition, art from the beginning was representational and concerned itself with depicting situations and events.

Thanks to recent archeological explorations at Hierakonpolis in Upper Egypt (Map 7), we now know that the establishment of farmin cultures in the Nile Valley accompanied an increase in rainfall, known as the climatic optimum, which occurred around 5000 B.C. The effects

of the climatic optimum were to last about 2,000 years and turned the
border-lands of the Sahara into pastures capable of supporting hards of
grazing animals and, in favored spots where water collected, seasonal
dry farming. Thus, a number of new ecological niches were created
out of which prehistoric man could make a living.

In Egypt and much of North Africa a mixed economy developed
and prospered based upon herding and hunting in the grassy
savannas, seasonal cultivation of wheat along the low-lying wadis which drained
the margins of the desert, and intensive farming supplemented by fishing
and fowling on the rich alluvial soils of the Nile Valley(1). Elliot Smith
derived Polynesian of the Pasific occion from the early type of steppyradid
in Egypt, through diffusion, but this is not accepted(2).

Here the problem is to find out when northern Semitic elements
penetrated Egyptian, which belonged to the Hamitic Language-group,
widespread in north and northeast Africa. Faint traces of Egyptian
contact with the Near Eastern world date back to the Mesolithic Period
when settlers with a Natufianlike culture were established near Helwan,
south of Cairo.

The earliest settlements with agriculture and pottery are found in
the Fayyum about 4500 B.C., and at Merimed about 4200 B.C. in the
Delta (Map 8), according to radiocarbon determinations(3). Their
inhabitants, however, may or may not have been of Near Eastern stock
Syrian timber was obtained during the Badari culture of Upper Egypt,
about 400 B.C., and copper was probably obtained from the mine on the
western side of the Sinai Peninsula. Nevertheless, Egypt maintained her
splendid isolation during the Amratian Period. It is only in the
Gerzaean Period (Ca. 3400-3100 B.C.) that we have evidence for the
ever-increasing contact with Palestine and the coast of the Levant. This
period is contemporary with the Late Chalcolithic or Proto-Urban of
Palestine, Lebanon and Syria. Then foundations were laid for the great-
ness of Egypt during the Archaic period and the Old Kingdom. This
period is known elsewhere as the Early Bronze Age(4).

(1) Ibid, p. 274.
(3) Mellaart, James : The Chalcolithic and Early Bronze Ages in the
Map 8. Landscape and settlement evolution in the Nile Delta (From: Butzer, 1976).
There for three winters between 1928 excavations were made by Caton-Thompson G. and Gardner, E.W. of Predynastic and Prehistoric research in Northern Fayuum, first under the auspices of British School of Archaeology and later of the Royal Anthropological Institute(1). In 1930-1 they go on their researchs in Kharga Oasis where at an early stage in their work, it become plain that the quantity of prehistoric material to be investigated and reduced to some sort of chronological order was so great. They after that held the expedition and wrote the scientific report which discussed the importance of Levalloisian development in Egypt with co-ordinations between the Nile and Kharga, and the position in time and space of the Aterian.

Some years after in 1939 Hans Winkler, published his work about the rock engravings of hitherto unknown type in the sanstone region east of Dakhla Oasis(2). These drawings he attributes to people of Early Predynastic age has named them «Early Oasis Dwellers», in contradistinction to another, partly contemporary group he calls the «Earliest Hunters». The identity of Winkler’s Early Oasis Dwellers and Caton-Thompson Neolithic Peasants is virtually confirmed by his record of «Neolithic implements typical of the Fayuum».

Since, 1930, Egypt and North-East Africa was accepted to be as an area so extraordinarily of the faceted-platform tradition that the technique persisted in various local guises long after the Palestinian later Palaeolithic peoples had proceeded to a more advanced culture, the term «Epi-Levalloisian» has been here coined rather than «Upper Palaeolithic, to denote these Levalloisian survivals into late Palaeolithic times(3).»

In highland areas where caves were available they were extensively used at this time giving the impression that cave dwelling suddenly became the typical human pattern wherever possible. The first known cave site in Africa also date from this time. It should be noted that no one ever lived inside a cave in the drak inner recessos. Habitation was in the mouths of caves, or at the base of overhanging cliffs (so-called «rock shelters»).

It is hypothesized that windbreaks of poles and skins or brush may have been erected on the outer side for greater warmth and protection

(2) Rock-Drawings of Southern Upper Egypt. Egypt Exploration Society.
from weather, and evidence of a post driven into the ground perhaps for this purpose was found at Combe-Grenal in France(1).

The Neolithic found at 5000 B.C. in the Fayuum was followed by the Tasian, the Badarian (Chalcolithic), the site of Merimde, and finally the predynastic Egyptian shortly after 4000 B.C.(2).

The development of Egyptian metallurgy was held on about 3100 B.C. on the appearance of a series of innovations, it may also be involved. Again, though it took local forms and used local materials, the techniques could well have been introduced. But despite all this, it would not be correct to say that civilization was transplanted into Egypt(3). What seems to have happened was that certain ideas and principles were introduced at a crucial time when Egypt was adjusting to environmental change and population growth a series of social, economic, and political alterations. The process, in turn, must have sparked a burst of creative energy, and the end result was a truly Egyptian civilization.

We do not yet have sufficient archeological information from all parts of the Nile valley to say just to say just where this first took place pinpoint the outside source or sources. If the change first occurred in the Delta region, the Sumerian influence must have been indirect, via the Levant and Sinai. If in Upper Egypt, this would support the view that there was direct sea contact between the Arabian Gulf and the Red Sea coast of Egypt. At any rate, the emergence of the essential pattern of Egyptian civilization was a rapid process, perhaps confined to a few generations, and coincides with the establishment of the absolute power of a single ruler over the entire length of Egypt(4).

The industries of Paleolithic Man in the Nile valley in Upper and Middle Egypt, may be tabulated as follows(5).

100-foot terrace Primitive Chellean, Chellean, and Chelleon-Acheulean or early Acheulean, also a coarse-blak industry or Egyptian from of the Clactonian.

(4) Loc. Cit.
(5) Sandford, K.S. : Paleolithic Man and the Nile Valley in Upper and Middle Egypt, p. 126.
50-foot terrace Developed forms of Acheulean culture, with all types of the 100-foot terrace as derived specimens

30-foot terrace Early Mousterian flakes and cores, also Acheulean implements probably derived from the 50-foot terrace

10-to 15-foot terrace of Upper Typical. Mousterian industry of Egypt

25-foot gravels of Middle in part contemporary with 10-to 15-foot Egypt gravels of Upper Egypt, with same Base of silts of Upper Egypt industry, but containing later forms identical with those of the base of the base of the Upper Egyptian silts.

Aggradation silts of Upper Final development of Mousterian culture: Egypt industries descending from it termed Degradation gravels of Upper Lower Sebilian (occurring at the top of and Middle Egypt, suballuvial the silts) and Middle Sebilian (making the beginning of degradation throughout the valley), followed by Upper Sebilian (with foreign technique) in Upper, not yet identified in Middle Egypt in geologically dated deposits.

Accumulation End of Paleolithic, then Neolithic to Recent.

An Acheulian-Levalloisian phase stands but an Early Levalloisian now seen to merge at its lower and into the physiographical position then assigned to the Acheulian-Levalloisian; and to occupy also at the upper end, in later Levalloisian groups, the place formerly attributed what Caton-Thompson, than termed «Pre-Sebilian». The Pre-Sebilian since 1930, renamed «Khargan» has revealed itself as a direct descendant the local Upper Levalloisian to which it is linked by an industrium, intermediate both in typology and stratigraphy, which Caton Thompson have named «Levalloiso-Khargan».(1). In this the stunted Khargan

industry types with their step marginal retouch occur, in a tentative way, alongside normal Upper Levalloisian form.

In man's early history there were doubtless long periods when the population was sparse and stationary, in equilibrium with the environment, as is true of most animal species. Before Neolithic agriculture began, about 6000 B.C. in Egypt and may be around that date in Iraq also. It probably began independently in different parts of the world. Man had no means of increasing his food supply except by improved methods of hunting, there was little possibility of accumulating

The archaeological assemblages of the Siwa Oasis region (Map 9 & Fig. 9) fall within the overall technological framework of North Africa between, 9,000 and 5,000 B.C.(2) Though they share some elements with the Capsian, they are distinguished by the absence of microlithic trapezes and triangles and the scarcity or absence of lunates. Their content of burins and backed elements, however, is similar to that of the «Capsian typique à fort indic burins» from El Outed II, Portal Fakher ta, and Reilieci II.(4)

Similarities between Saharan assemblages and Siwan assemblages are vague, with the possible exception of the Adrar Bous and Grebon assemblages. The assemblage from Oued Grebon is similar to that of Gara Oasis in the abundance of burins and points, but differs in the prevalence of Ouchtata backed bladelets, which are lacking in the Siwan assemblages.(3)

The Siwan assemblages and the Qarumian of the Fayuum (dating from 8,100 B.C. to 7,140 B.C.) are characterized by a high content of perforators, including the mèche de forêt. Both also show a very low frequency of microlithic geometrics. The burin index in the Qarumian very low compared with that of the Siwan assemblages.

(3) Loc. cit.
Map 9. The Siwa Oasis area. The 1975-76 surveys covered Siwa Oasis itself, Girba, Zeitoun, Um Huweilmil, Um el-Hiyus, Nagbel-Magabra, Garo Oasis, el-Aroq, and el-Bahrin.
Swan assemblages resemble the «Libyco-Capsian» and the earliest Neo-assemblages also called «ante-Neolithic» or «proto-Neolithic» (10,000-7,000 B.C.) at Haua Fteah in the scarcity of notches and denticulates(1).

We can see in the latest gravel terraces of the Nile many characteristic of emblement technique. The 9 m. terrace in its characteristic form, containing the first reliable traces of Levalloisian technique, is found only with certainty as far north as Asyut (2). Below it another better-preserved feature, the 3-4 m. terrace widely represented in Middle Egypt, is virtually absent north of Samalut. Farther north, however, in the lower reaches proper, an exceptionally well-marked terrace occurs at 8 m. That this is certainly not the same as the 9 m. terrace further upstream is clearly shown by its archaeological content, which, as will shortly be described, is appreciably more evolved. The relationship of the 8 m. to the 3-4 m. feature upstream is, however, much harder to establish, and as yet by no means certain. It is not impossible that it may even be the equivalent. The point is of interest owing to its rich archaeological context. Isolated terrace fragments at various points further northwards flanking the Delta have been plausibly equated with the 8 m. terrace, and suggest connexion with the late Last Interglacial sea-level at 7 m.

According to this work both the 8 m. in the lower reaches and the 9 m. represented in the middle reaches of the river are likely to have been graded to a level approximating to the first high sea-level of the Last Interglacial (at about 18 m.). These results can, however, be criticized from a number of points of view. In the first place there is every reason to think that a long interval of time separates the 9 m. from the 8., and no evidence has been noted anywhere else in the world of two 18 m. maxima during the Last Interglacial; such a possibility can indeed be ruled out of any feasible working theory.(3).

Despite this uncertainty it seems none the less clear that the most likely date for the 8 m. terrace and its contents falls some time in the Last Interglacial. All that is certainly known of the 3-4 m. terrace upstream is that it follows the 9 m. terrace after a substantial interval; both topographical and stratigraphical data place this beyond question.

(3) Ibid, P. 136.
The lake levels of the Fayuuum may then be tabulated as follows (heights in metres above sea-level): (1).

<table>
<thead>
<tr>
<th>Lake Level</th>
<th>Corresponding level in Nile Valley (heights above alluvium in brackets)</th>
<th>Classification of associated Human cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 m.</td>
<td>42 m. (51 m. lower portion of meander)</td>
<td>7 Evolved hand-axe culture</td>
</tr>
<tr>
<td>34 m.</td>
<td>36 m. (8 m)</td>
<td>Evolved Levalloisian</td>
</tr>
<tr>
<td>28 m.</td>
<td>7 (no certain surviving traces)</td>
<td>Final Levalloisian</td>
</tr>
<tr>
<td>25 m.</td>
<td>24 m. (--- 6 m at el Hibah)</td>
<td>Final Levalloisian</td>
</tr>
</tbody>
</table>

No certain remains were associated with the 40 m. level, which is variously estimated as somewhat higher by other authorities, although the Fig. 9) fall within the overall technological framework of North Africa position and weathering of a few loose finds of hand-axes suggest that they may conceivably be referable to it.

The 34 m. lake level is represented by a impressive shingle bank over considerable distances. From then on the successive levels are apparently linked into a continuous succession by numerous minor beaches preserved in favoured positions. The presence of some low-level Levalloisian finds, far below the levels just mentioned, suggests that a low level may have occurred between the 40 and 34 m. levels, as the sequence in the main valley further upstream would lead one to expect.

The cultural remains associated with the 28 and 22 m. levels so far recovered (Figs. 9 and 10) are only sufficient to suggest and advanced and diminutive version of Levallois, and there is really no justification for likening them at all closely to the second stage of the proposed Kom Ombo sequence. The same is true of the still more exiguous series found in the low-levels gravels at el Hibah, not far upstream from the Nile end of the Hawara Channel.

The people of the Middle East* had made an even greater invention-agriculture. Agriculture began about 6000 B.C., along with animal

(1) Ibid, p. 146-149.

(*) A certain geographical focus in: Egypt, Iraq, Syria, across Iran and Afghanistan to the Indus Valley.
husbandry, pottery-making, and the manufacture of polished-stone axes
traits that, taken together, constitute a way of life known as the
Neolithic (New Stone Age) culture. Following the Neolithic, about 3000
B.C., the Middle East provided the setting for the world's earliest
manufacture of copper and bronze tools and weapons, its first use of the
wheel, and its earliest forms of writing. This combination of traits is
called the Bronze Age.

The growth and elaboration of irrigation systems, at least in arid
Egypt Mesopotamia and Peru, was an immediate consequence of
urbanization. In the 5th. millenium B.C. forming villages appeared
along the edge of the upper Nile Valley and on the shores of the Fayum
lake. During the next millennium the formers developed their techniques
and social organization enough to master the papyrus-need swamps and
fierce animals such as the crocodile and hippopotamus of the Valley
proper.

In the area of Middle and Lower Nubia and that of Upper Egypt
till Luxor, we can notice in the 100 foot terrace primitive of Early
chellean, Chellean, and Chellean-Acheulean implements have been found,
but not in older beds. Many are made from pebbles. A coarse flake
industry occuring somewhat sparsely, recalls the Clactonian industry
bound at a similar, pre-Acheulean horizon in England and Europe.

In the 50-foot terrace Chellean-Acheulean and Acheulean implements
occur, with small nather crude, flakes. The 30-foot terrace is known
elsewhere to contain early examples of the Mousterian method of
detaching flakes from roughly prepared blocks of flint. The Mousterian
technique reached an exceedingly high standard at the time of the 10-
foot terrace and the beautiful workmanship seen in the implements here-
figured represents the «typical» Mousterian of Upper Egypt at its best.

During the following period of silt accumulation the previous high
standard was not maintained. For a while flakes with equal beauty of
form and technique were made: but imperceptibly they became thicker,
lost their fine edges and retouch, and changed their shape from that of a
broadbased leaf to a rough rectangle or a simple point. Similar changes.

(1) Coon, Carlton S.: Seven Caves: archaeological exploration in the
1973, p. 100.
Fig. 11. Nile Valley: (1-10) later silt stage, (11-20) Fayum 22-24 m, beach (X2/3)
took place in the cores, small pebbles being used almost invariably instead of larger masses. To these changing stages the term «Sebilian» has been applied, and the Lower and Middle Sebilian may be regarded as essentially of Mousterian derivation. Since the word serves its purpose and records the admirable researches of its author, M. Vignard, there seems no reason to abandon it(1).

Distinct from the Lower or Middle Sebilian is the Upper Sebilian, which has essentially neanthropic character of workmanship and suggests the introduction into this part of the Nile Valley of Capsian-like influences from North Africa or elsewhere. The apparent hiatus between Middle and Upper Sebilian industries, reflected in their geological positions, that some event of considerable human importance took place at this time. At present there is insufficient evidence to judge what it was, but we suspect that the growth of deserts here and elsewhere had set in motion those migrations which continue at the present day among the desert population(2).

Ancient Man and his Civilization in Northern Sudan:

The study of prehistory differs in many respects from that of conventional history. There are differences, mostly enforced by the nature of the evidence, offer both handicaps and certain advantages from our point of view. For one thing, prehistory is anonymous, while so much of conventional history is biographical; the familiar «great man» concept of history is thus ruled out(3).

Like anthropology, prehistory embraces the whole range of human activities and accords them equal attention, it is interested in all men who have ever lived, anywhere in the world - the total record of humanity(4). Another advantage of prehistory is the opportunity it provide, to study the interrelationships of men and their societies with the natural environment over long periods of time (3). Map 10).

Breasted, J.H. (1865-1935), held an epigraphic survey of Nubia and

(2) Loc. cit.
(4) Ibid, p. 7
(5) Loc. cit.
the Sudan (1905-1907) in the collaboration with Sir Flinders Petrie(1), they discovered many implements, most of it related to the prehistoric period.

Mousterian implements have been found in the Sudan, but the Neolithic was much later than in Europe. Grinding stones occur, as well as microliths. There is evidence of Egyptian influence, in the form of scarabs and plaques, from 700 B.C. Although contact with Egyptian civilization dates from this period, there was no permanent development as a result. Even if there was physical heterosis, it was accompanied by mental stagnation through the ages. In the northern Sudan (Nubia), which was in direct contact with southern Egypt, the Meroitic Kingdom developed from about 700 B.C. to A.D. 350. Extensive ruins on the eastern bank of the Nile near Khartoum include palaces, temples, and the pyramids of Meroitic Kings. The Meroitic language was debased.

from of Egyptian hieroglyphics but it lasted only about four centuries. The rest of the Sudan never acquired even a temporary civilization (1).

Iron was probably introduced from the Meroitic Kingdom about two thousand years ago. The Nubians are much the same now as they were 2000 B.C. It must be pointed out that the vast swamps of Sudan on the White Nile rendered any direct communication with Egypt by this route impossible; but Egyptian influence passed southwards by a more easterly route up the Blue Nile into Abyssinia and thence to the Great Lakes. The modern Nilotes disarray the homes of their cattle into the same bizarre shapes that the Egyptians used in the Pyramid Age of Saggara 2700 B.C. The Congo burial customs also show Egyptian influence. It is said that no Negroes are represented in Egypt until after the Age of the Pyramids (2).

A.J. Ackell says (3) that the Wanyarga -Ennediarea which lying on the western of the Nile Valley; must hold the key to several problems that at present confront the student of prehistory and early history in the Nile Valley. One question to which Arkell particularly hoped to find the answer was how, on neolithic sites situated at two points in the Nile valley and separated from each other by approximately a thousand miles (vis. the Fayum and the Khartoum) (4). (Fig. 12).

Arkell, A.J. agreed with M. Dalloni and Théodore Monod (5) that the stone implements of an unusual type, a semi-polished hollowcut adze (designated «gouge» by Miss Caton-Thompson in «The Desert Fayum»), and which had been found by him over a wide area west of Tibesti north-west of Lake Chad, probably spread to the slopes of that massif itself. He suggested after Theodore Monod that these two outstanding (Bilmas and Djado to Tumbo) peculiarities of the Neolithic, and common to both found in Fayum and Khartoum, which must have come from the same source outside the Nile Valley, had probably come from the west. It therefore seemed reasonable to expect to find a neolithic culture with these features in the area of the large Quaternary lakes known to have existed on the eastern side of Tibesti, of which Great Wanyanga (Ounianga Kebir) is the best example surviving as a lake today.

(2) Ibid, p. 214.
(4) Loc. cit.
K.S. Sandford and W.J. Arkell said(1) that there was at Dibeira (before the construction of the High Dam at Aswan, 1960) a Sebilian beach, it had certainly closed before the 40-foot level was reached by the Nile, for this is undoubtedly the riverside habitation level and perhaps the flood level of Upper Sebilian times. At Darau the 40-foot level is Middle Sebilian, pre-Upper Sebilian. The lowest known Middle Sebilian flaking site is at 45 feet, we can find it south of Edfu. This seems to limit the Middle Sebilian.

In lower, 20-foot levels (Edwah to Wadi Abdad) rolled Upper Sebilian implements still fail to appear in the gravels. There thus appears to be a considerable break in the Human sequence.

The lowest known Upper Sebilian site is at 33 feet, but the river was apparently then below 20 feet. This, with the striking relation of Upper Sebilian sites to river silts at Dibeira West (in the Sudanese Nubia), suggests a temporarily greater rate of river-fall than obtain in

recent times. The outstanding fact is the absence of Upper Sebiliian implements from the 40-to 20 foot bars between Darau and Wadi Abdad(1).

The negro has not yet been traced back into the Old Stone Age in the Sudan for certain, but the excavation of Arkell, A.J. (1949) of the mound just north-east of the railway station in Khartoum showed that it was a negro people who by making and using pottery took the first step towards civilization in the Sudan that we know of yet(2).

Its occurrence in the eastern Sudan on a route to Upper Egypt still used occasionally by camel thieves, suggests that futtern incised on it, first developed into the true rippled pottery typical of Badari(3). In Egypt and the Sudan there are a few minor fossil localities but only two have provided significant collections(4).

The links between the Pleistocene of the Mediterranean area and the tropical zone of East Africa are few. A part from the terraces of the Nile Valley which cannot be discussed in this paper and the climatic character of which is by no means clear, there are the Kharga Oasis, Eamer and Ethiopia, providing stepping-stone to Kenya and Tanzania (5). I think that Fayuum in the future will take its position in providing another link, but too many points of its Pleistocene succession are still a matter of controversy.

The bones which the early Khartoum negroes left on their camp were mostly those of antelope and fish. But for the indiscriminate use of firearms and the consumption by large hards of domestic cattle of such grass as comes up in the rains, there would no doubt be more antelope in the vicinity of Khartoum than the few gazelle that survive to-day, but it is probable that there was more grass then owing to a greater rainfall (whatever the cause of the advance of desert conditions), or there would not have been such a high proportion of antelope (including buffal) among the remains(6).

(1) Loc. cit.
(3) Ibid, p. 38.
(4) Loc. cit.
On the Blue Nile near Singa A.J. Arkell reports implements of Nanyukian or Kenya Fauresmith type from calcareous growelly sands in the river bed bared a lower stage. The locality and horizon is that of the Singa «protobushman» skull and a variety of mammalian bones. The age probably corresponds broadly with that of the post-Acheulean or developed levallvois «stage of the northern region»(1).

A specimen stated to have been that of a Negro was found in 1948 in Khartoum, near the rail-road station as mention before. Several skeletons had been buried in a mound along with Mesolithic stone tools and with pottery. According to McBurney, the Khartoum Neolithic began about 3,253 ± 295 B.C.(2) and the Mesolithic material, including the pottery, could hardly be much more than 500 years older(3). One skull has been partly described(4). It is Negroid, but to Coon, C.S.(5) it looks like the skull of a modern, local Sudanese, a mixture of Hamite and Negro, than like the skull of a full Negro : As these burials may not have been much more than a thousand years older than the earliest Egyptian mural representations of Negroes, the presence of a Negro or Negoid in the Sudan at 3,700 to 4,000 B.C. not surprising.

In 1924 the theory of a northern origin of Man in Africa, was re-enforced by the discovery, made by W.R.G. Bond, of a Bushman-like at Singa, 200 miles south of Khartoum, on a bank of the Blue Nile. Grabham, G.W. who had studied the site geologically from the standpoint of rates of soil deposition caused by the overflow of the Nile, stated, in 1938, that it could not be less than 5,000 nor more than 10,000 years old. The skull, however, was completely mineralized, despite the fact that it is thought to be of fairly recent date.

In any event, the Singa skullcap is clearly as old as, if not older than, any known and competently dated Capoid skull found yet in South Africa. The skullcap is nearly complete, but the face is missing.

(2) Calculated date from two date : C-753=5,060 ± 450 B.P. for charcoal from Shakeirab, and C-754=5, 446 ± 380 B.P. for skull from the same site. The average of the two is 5,253 ± 416 B.P., or 3,253 ± 295 B.C., if 2,000 years are subtracted in conversion from B.P. to B.C. (Coon, C.S. : The Origin of Races, footnote p. 551).
The bone is thick (13 mm. on the parietales) and the brown ridges moderately heavy, with a distinct notch above glabella, like Sinanthropus and like the best infantile of the Bushman skulls. The forehead is narrow, but bulgin; the parietales also bulge, giving the brain case a pentagonoid appearance. The orbits were apparently rectangular. Morphologically the skull could have been that of a full-sized progenitor of a Bushman. It is brachy cranial (L. 186, B. 154, C.I. 82), but it may have been distorted. Even if, the index of 82 is correct, this does not invalidate the racial identification of the Singa skull because there are some living brachy cephalic Bushmen. So, the theory that ancestral capoids migrated southward from North Africa is true to go back to the discovery(1).

BY WAY OF CONCLUSION

We can see that prehistoric civilization in the Nile Valley was the earliest one in Africa and to in great extend all over the world. Its history of living is still with any no interruption of dead period. The civilization in Egypt an din Northern Sudan was in connection start from the prehistoric period till at the moment as one civilization.

The industrial traditions of tropical regions in Africa during the later Palaeolithic, as far as can be judged at the present, appear to have been characterized by a greater degree of survival from earlier periods, and the centre of cultural evolution—and no doubt biological as well—seems to have moved to more temperate regions.

In late post-glacial times, however, this shift was reversed and the great cultural advances of the seventh to fifth millennia B.C., heralding the development of settled life, were quite certainly centred in the warm-temperate to sub-tropical regions of western Asia and Northern Africa.

The position as a whole may then be summed up as follows. Throughout temperate Eurasia a succession of climatic events can be recognized which go far to provide a chronological basis for a dynamic picture of early cultural evolution; south of this, however, cultural happenings of least equal if not greater significance can as yet only be integrated in the general pattern with considerable reservations. In particular cases, however, it is frequently possible to offer a reasonable working theory of correlation.

It has remarked that the study of Egyptian culture leaves one with the impression that the Egyptians were a clever and ingenious people whose progress was stultified by the development of one the most rigid and highly centralized governmental systems the world has ever seen(1). The complete union of the religions men and of the state one, resulted in a correspondingly complete control over their subjects minds and bodies. And such a system can function successfully only by rigidly maintaining the status quo.

The African prehistoric industries are essentially those of stone. Bone cultures play but a very small part indeed in Africa, there was no bone industry in the Aterian. Bone artifacts were but slightly developed in the Capsian. It is only in the Meso-Neolithic of the Sudanese regions and in the merolithic and predynastic periods of Egypt that there is any considerably number of objects out of bone.

Various sorts of stone were used for the polished stone implements, but, as in Europe, the most popular were magmatic, eruptive or metamorphic. Rare rocks were sought out for ornamental purposes especially during the Neolithic. Towards the end of prehistoric times clay was used for making pottery throughout Africa. The quite remarkable wealth of prehistoric art found in many parts of Northern African especially the east area.

The occurrence of stone implements classifiable as Neolithic (by reason of the use of pressure-flaking, the presence of undoubted arrow-heads, and here and there of ground axes), a similar distribution of pottery impressed with characteristic basket-work designs, and, finally, the distribution and content of the art provide evidence of a remarkably uniform state of pastoral culture (of cattle not of goats or sheep which were very rare) over vast areas from the Atlantic to the Nile.

Bibliography*

(1) Shand, Chester S.: Man in Prehistory, p. 279.
(*) References cited and further reading.

34. ——— : The Haou Fteh (Cyrenaica) and the Stone Age of Southeastern Mediterranean. Cambridge, Cambridge Univ. Press, 1967.

40. ——— : «The Excavations of the Egyptian University in the Neolithic site at Maadi; First Preliminary Report (Season 1930-1931).» Egyptian University Faculty of Arts Publications. Cairo, No. 13, 1932.

F.A. GAWAD